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Abstrne;. An algebraic method IS used to solve the bound state problem for the most 
general Natanrun potential for which the Schmdmger equation can he reduced to the 
confluent hypergeometnc form (hence, conlluenl porenools) The solution is obtained 
straigiitforwardly A mmpie argument is grven to sustain that the Nataoron potentla1 IS the 
most general conanent potential 

I. Intradnstion 

bast yeas a remarkable set of potentials was solved using an algebraic method [l]. On 
the other hand, some years ago Natanzon [21 found a wide famiiy of potentials for 
which the Schrodinger equation can be solved. With these potentials the Schredinger 
equation can be rtduced either io hypergeometric form or io codueni hypergeomeific 
form. The potentials in the second case will be called confluent porentiels. 

Cooper er el 131 have made a complete study of the whole family of Natanzon 
potentials in connection with supersymmetric quantum mechanics and they have fourtd 
new solvable pureiatials. See also the references cited in this interssting paper. We 
follow much of their notation. 

The present article deals with the Natanzon famiiy of confluent potentiais. It is 
shown that ihere is a simple algebraic method [4-61 to solve the bound state problem 
for them. It will be cailed spectrum generating QigebrQ (or SGA) method. 

The conauent Natanzon potentials 

we defined in terms of six parameters g, ,  g,, 5,,  q, c, and q and a function h(r j  
satisfying 

dh 2h 
d r - a  

., .--..---.--" . - . ~  - rsnraiiy suppoired by gran: r"NlltCI 1 .I"."*" 
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where 

P Corder0 snd S Salam6 

R - u2h2+u,h i eo (1.3) 

and 

A = w: -4u2c0. (1.4) 

Particular cases are well known potentials. the three-dimensional harmonic oscil- 
lator (u,=O,  c,=0); the three-dimensional Coulomb potential (U,  =0, co=O) and the 
Morse potential (u2 = 0, 5, = 0). 

The algebraic method summanzed in section 2 has in the past allowed one to solve 
collectively the harmonic and Coulomb potentials, the bound state problem for the 
Morse potential and it has been applied also to deal with the Klein-Gordon and Dirac 
equations [6] .  Jn [4] a family of potentials which can now be identified with the 
wnfiuent Natanzon subclass c,=O was solved. Details to sustain the last statement 
are given at the end of section 2. The results of [I] already cited can now be described 
as giving the solution lo several potentials whtch ars subclasses of the Natanr011 
confluent family of potentials. 

Other developmeiits [l] gave an ingenious 2nd rather different approach that made 
it possible to deal directly with the hypergeometric potentials, a method that was 
successfully used in [g] to solve the bound state problem for u m y  of the solvable 
hypei.geonietric paienfials. 

Besides [3] supersymmetric quantum nechanics (SUSYQM) has been used as an 
algebraic method to find new solvable potentials by others as i? 19, IO]. SUSYQM has 
also been extended to the scattering sector [Il l .  'The EUSYQN techniques lead to purely 
algebraic solutlons when the potentials are shape invariant 112,131. Results on this 
are also found in 1141. The genera! Nztanzon potentials are not directly solvable by 
these techniques precisely because they are not shape icvariant [31. 

Using the polenfid group approach the Morse and Pijschl-Teller potentia! problem 
(bound and scattering states) were shown to be connected with unitary representations 
of SU(2) (bound state sector) and $U( 1 , l )  ==50(2,1) (scattering sector) [IS]. See also 
1161. More recently it was S ~ G W ~  chat by making variable and oparator transformations 
on shape invariant potentials it was possible 10 solve more general Hamiltonians and 
in this way ?hey [I71 obtained the solution for the general hypergeometric. Iiatanzon 
potential starting from the PijschLTeller potextial and also starling from the 3~ 

harmonic oscillator rhep solved confluent Natanzon potentials. On the Moise potential 
see also [18]. Quite recently a generariation of the potential group approach ha5 been 
proposed [I91 to deal both with the confldeni and general hypergeometric related 
Schrodinger equations. 

In all the above methods the Hamiltonian is written directly in terms ofthe operators 
of the algebraic strnct'zre involved. Typically quadratic expressions on the elements 
of the algebra an: used. In our case, on the contrary we make an identification of the 
form Y(r)(H -EN!(F)  =[a&+ b.T,]'P(r), The right-hand sideis hnearon thegenerators 

In section 2 the SGA method is summarized. In section 3 it is applied to find the 
bound stale probl'zm associated to the general confiuent Natamon potential and in 
Section 4 a direct plausibiiity argument is given-~~.&bin the context nf our algebraic 
method-to suggest that potential (1 1) is the most general one fo: which the 
Schrodinger equation can be reduced to the confiuent hypergeometric form. 

J, of SO(2, 1). 
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, 2. Review ui the algebrnie metbod 

In what follows a sketch of the SGA method is presented. In this approach [4,5] the 
eigenvalue problem ( P I  - E)" = 0 can be restated in terms of a particular realization 
of the SO(2, 1) generators J, as: 

[2(1 +p)Jo+2(1 - /3)J,  - s p  = 0 (2.1) 
where the generators satisfy the commutation relations [ J , ,  J l ] =  if2, [J,, &]= Jo. 
[&, i12j = jl and p > 0 eo guarantee ehat the operator acting on * in (2.1 j is compact 
(i.e., it has a discrete spectmmj. The coeffiicients p and 6 are determined hy requiring 
that (2.1) reproduces the SchiGdinger equation up to a common Faactor. Jn 141 the 
connection between different realizations of the algebra SO(2,l) in terms of differential 
operators and the Schrodinger equation with several potentials was established. 

It was shown that in all cases the suitable representation is D'", consequently, the 
compact geneiatoi Jo has the spectmm 

where Q = J:  - J: - J: is the Casimir opeiator of the algebra and Y = 0 , l ~  2, . . . and in 
WEW irreducible representation y is defined such that the valve Q is 

Since y gives the same value for Q as y'= 1 - y its definition is completed requiring 
that y 2  1. 

ET the tilled operator 

To= exp[iQJ& exp[-i8J2] (2.4) 
with 

P - 1  tanh B = - 
P + l  

is used in (U), then that equation becomes, 

where Tu,? is the Schrodinger wavefunction. From the above expressions it follows that 

(2.7) 

For the fami!y of confluent potentials the following realizatton [SI for the generators 
J,, is useful in terms of an arbitrary Function h ( r ) ,  

1: d' h'"h 3 h " 2 h  Q h j - +--+--- 
h 4  I -  !:'2 dr' 2h'3 4 h'" (2.8) 

h d 1 h"h iJ .- - k ' d r  2 .$'" 
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The comparison of (2.1) with the Schrodinger eqnarion for spherically symmetric 
potentials and using (2.8) for the generators, yields the following relationship between 
our basic function h ( r )  and the potential V ( r ) ,  

Equations (2.7) and (2.9) are the practical basis to apply the SGA method besides the 
relation (2.3) between Q and y. 

Example. Take h ( r ) = 2 r  and V ( r ) = - e * / r + I ( I + l ) / r * .  From (2.9) it directly follows 
that S=2e2,p=-Eand Q=l(l+1).~eIastoftheserelationsim~liesihat y=Zl+2 
which we use in (2.7) to obtain that 

This is eli the effort it takes to obtain an energy spectrum. Notice that obtaining the 
energy spectrum is a purely algebraic task. 

Equation (2.9) makes it evident that at least one of the constants y (hence Q), p 
or 6 depend on the energy eigenvalue E,. Consequently, from now on they will be 
denoted yv, p., 6, end Q”. 

The c a m s  space for the representation (2.8) is expanded by the functions 

(2.10) 

where ,F,(-v, yv, h(r) )  are the standard confluent hypergeometric €unctions. This 
representation space is easny derived. For example, it can be obtained directly from 
the self-contained section 5 of [57. 

The wavefunction vhihich appears in (2.6) is obtirined by tilting the function defined 
in (2.10). If is amazing to  observe that the only efcct of the ti:t is CO produce zgain 2 
function (2.10) having an argument f ( r )  instead of &(P) where 

f ( r )  = - X h ( r ) .  (2.11) 

Similarly the tilted generators look exactly as in (2.8) but with j ( r )  playing the 
role of h(r) .  The ti!t acts as a dilatation rescaling the basic function h by a factor $E. 

From an alge&ic point of view it is equivalent to work with the representation 
(2.8) over the space defined by ihe functions (2.10) or to work with the tiited ob.jects 
replzcing h by f everywhere. 

From the commutatian relations it fo:Lovrs that the tilted generators have the e9ect: 

(2.12) 

where j; = F, c ii, . 
We come back to the statement that in [e] (referred to as I in this paragraph) a 

solution to the bouxd state problem of the whok famiiy of confluent Nztmzon 
potentials with q, = 0 was given. in I the formaiism is explicitly three dimensional, but 
it is simpler and equivzleiit io  deai with functions of I oniy. n e  algebra generators 
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given in 1-(3.17) are essentially the same as (2.10). Instead of (1.2) in I the differential 
equation for h is 8-(4.6), which corresponds to (1.2) with c,=O. The Hamiltonian is 
written explicitly-in 144.5). Checking that the potential involved corresponds to the 
subclass co = 0 is now straightforward. 

The present formalism is invariant to the simultaneous change 

(2.13) 

while y remains unchanged. Given this freedom there is no loss of generality choosing 
h positive. 

Tn (1.2) it has been assumed that h has a positive denvative, which is cot time in 
the case of the Morse potential. Nothing changes if a minus sign is put in front of the 
right-hand side in (1.2) (and (3.1)) since every term in (2.9) has an even number of 
derivatives of h. 

3. S08siioo to $he Idatmezooe eoefiwemt po?een%ial probkm 

The way of using the algebraic method of section 2 to solve the Schrodinger problem 
for the conQuent Watamon potentials is now shown step by step. First nollce rhai R 
satisfies, 

2h - (2u2h + U ] )  - dX _- 
dr a 

and use this relation plus (1.2) to find that (2.9) becomes. 
S,h -P,k2-4Qu--l b 2 h 2 + b - , h  5(u2h’+fu,h)* ~ 

+. w’ ~ . - 
R R2 

E, - V( F) = 

(3.1) 

If h is eiiminated from (3.2) in favour of R solving the quadratic equation (1.3) 
(which root vie choose is immaterial) and the potentkt (1.1) is added to (3.2), an 
expression which should be E, itself is oblained The expression that is actually 
obtained however is the sum OZ :hree types of terms’ ?-independent terms, ienns 
proportional to mz - A and terms proportionai to R-‘. Hence three sonditions 
emerge 

- 

(3.3Q) 

(3.36) 

(3.34 

The last two expressions represent a linear system for p. and a,, which can be 

CL = %(v - 1 - CGEJ (3 .4~)  
S , = - g , + u , E ,  (3.4bf 

replaced back in ( 3 . 3 ~ ) .  Elementary manipuletions bring in 

r2 _ n  - - ~ F  (3.4i) r u - 6 ?  -20”. 
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TaMng ( 3 . 4 ~ )  with Qu eliminated in favour of 'yw from (2.3) renders, 
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y. = 1 +-. (3.5) 

;emanding that the expression 8, =2-(7,+2v) from (2.7) is identified with 
(3.4b) it foiiows that 

This is the expression that determines the energy spectrum of the potential defined in 
section 1. 

The wavefunctions are the functions "(f) of (2.10) with argument f given by 
(2.11), nameiy, 

w?llrh_ has the to-. giver in. 

" ".?" aR'/4h'7.-"/? ex~[-&k/21&-u, % ; a h ) .  (3.7) 

4. Wby the Natanzorn potentids 

Finally it is argued in a quite simple way that the Natanzon potential defined In section 
1 is unique. The constraint, of course. is that the Schradingcr equation can be reduced 
to wnliuent hypergeometric form or--equivalentlp [5]-that it can be sobed with the 
algebraic method of section 2. In tbis section all subindices U are dropped. 

With no loss of generality it can be assumed that 

dh 
d r  -=*v'EQg. (4.1) 

to rewrite equation (2.9) in the form 

1 d2G 5 d G  G S G  p 
4 6  d r 2  16G' d r  h' 4 h 4 

E - v(r) = - -- Q-t- --- G. 

Since rhe fdnction k gves rhe potential through (1.1) it must be energy independent. 
Making a formal derivative of (4.2) with respect to E gives an equation with four 
algebraically independent terms, 

G d 6  G d p  G d Q  1 = - - 
4 h d E  4 d Z  h 2 d E  (4.3) 

implying thai Q, 6 and p depend at most linearly on the energy. Therefore the derivatives 
of these three quantities should be ConstatS. Calling them - 4 4 ,  c, and -u2 respec- 
tively the Natanzon potential of section 1 is rewvered. 
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